Perturbation Theory and the Effects of Substitution in Square and Bipyramidal σ-Bonded Compounds

Evgeny Shustorovich ${ }^{1}$
Contribution from the Department of Chemistry, Cornell University, Ithaca, New York 14853. Received April 10, 1978

Abstract

The effects of substitution of L by L^{\prime} in square $E L_{4}$ and bipyramidal [trigonal (TB) EL ${ }_{5}$, tetragonal (octahedral) $E L_{6}$, and pentagonal (PB) EL.7] σ-bonded complexcs, for E a transition metal M or main group element A , have been considered in the framework of the perturbation theory of canonical MOs. The difference in ligand σ orbital energies, $\delta \alpha^{\prime}=\alpha\left(\mathbf{L}^{\prime}\right)$ $-\alpha(\mathrm{L})$, where $\delta \alpha^{\prime}>0(<0)$ correspond to a better donor (acceptor) substituent L^{\prime}, was taken as a perturbation and all changes in overlap populations of different $\mathrm{E}-\mathrm{L}$ bonds, $\delta N(\mathrm{E}-\mathrm{L}) / \delta \alpha^{\prime}$, were obtained in terms of the $n \mathrm{~s}, n \mathrm{p}$, and $(n-1) \mathrm{d}$ contributions. It was found that in all transition metal complexes ML_{m}, the s and d contributions to $\delta N\left(\mathrm{M}-\mathrm{L}_{\text {trans }}\right) / \delta \alpha^{\prime}$ are always negative and bigger in absolute value than the p one, which is always positive. The s and d contributions to $\delta N\left(M-\mathrm{L}_{\text {cis }}\right) / \delta \alpha^{\prime}$ are always of opposite sign, typically the s one positive and the d one negative, so that $\delta N\left(M-l_{\text {cis }}\right)$ will be smaller in absolute value than $\delta N\left(\mathrm{M}-\mathrm{L}_{t r}\right)$ and may be of any sign. The effects of substitution in main group element complexes $\mathrm{A} \mathrm{L}_{m}$, strongly depend on the oxidation state of the central atom. The role of π-bonding eflects was also briefly discussed. The results obtained agree with experiment and permit the fundamental regularities of substitution, particularly the trans and cis influence, in $E L_{m}-k L_{k}$, complexes, to be explained and predicted.

Introduction

Recently we have developed the general analytical LCAO MO approach ${ }^{2.3}$ for treating the effects of substitution of L by L^{\prime} in any chemical compound EL_{m}; E is a transition metal M or main group element A . In the preceding paper ${ }^{2}$ we have considered these effects in linear $\mathrm{EL}_{2} D_{\infty h}$, trigonal $\mathrm{AL}_{3} D_{3 h}$, and tetrahedral $\mathrm{AL}_{4} T_{d}$ compounds where all the ligands L are geometrically equivalent with respect to the substituent L^{\prime} ' in the $E L_{m-1} L^{\prime}$ complex. The purpose of the present work is to consider the effects of substitution in complexes where not all the ligands L are equivalent with respect to L^{\prime}, namely, in square $\mathrm{EL}_{4} D_{4 h}$, octahedral $\mathrm{EL}_{6} O_{h}$, trigonal $\mathrm{EL}_{5} D_{3 h}$, and pentagonal $\mathrm{EL}_{7} D_{5 h}$ bipyramidal compounds. As carlier, ${ }^{2,3}$ we choose the overlap population $N(\mathrm{E}-\mathrm{L})$ as a criterion of the $\mathrm{E}-\mathrm{L}$ bond strength. Further, we adopt the difference in ligand σ orbital energies, i.e., diagonal matrix elements (Coulomb integrals)

$$
\begin{equation*}
\left\langle\sigma_{\mathrm{L}^{\prime}}\right| H\left|\sigma_{\mathrm{L}^{\prime}}\right\rangle-\left\langle\sigma_{\mathrm{L}}\right| H\left|\sigma_{L_{\mathrm{L}}}\right\rangle=\delta \alpha^{\prime} \tag{1}
\end{equation*}
$$

as a perturbation, so that, to first order, all changes in $N(\mathrm{E}-\mathrm{L})$ for a given ligand L will be (the closed-shell case)
$\frac{\delta N(\mathrm{E}-\mathrm{L})}{\delta \alpha^{\prime}}=\sum_{\chi}^{\text {s.p.d }} \sum_{i}^{\text {occ }} \sum_{j}^{\text {unoce }} \frac{c_{i \mathrm{~L}^{\prime}} c_{j \mathrm{~L}^{\prime}}\left(c_{i \chi} c_{j \mathrm{~L}}+c_{j x} c_{i 1}\right) S_{\chi \mathrm{L}}}{\epsilon_{i}-\epsilon_{j}}$
Here the LCAO MO coefficients c and energies ϵ are designated by the indexes where χ refers to AOs of the central atom $\mathrm{E}(\chi=\mathrm{s}, \mathrm{p}, \mathrm{d}), i$ and j to the occupied and vacant canonical MOs, respectively, and $S_{\chi \mathrm{L}}=\left\langle\chi \mid \sigma_{1}\right\rangle$. Finally, for every bonding canonical MO

$$
\begin{equation*}
\psi=c_{\mathrm{E}} \chi_{\mathrm{E}}+c_{\mathrm{L}} \theta_{\mathrm{L}} \tag{3}
\end{equation*}
$$

we shall use as its antibonding counterpart

$$
\begin{equation*}
\psi^{*}=c_{\mathrm{L}} \chi_{\mathrm{F}}-c_{\mathrm{E}} \theta_{\mathrm{L}} \tag{4}
\end{equation*}
$$

where χ_{E} is an AO of the central atom E and θ_{L} is a symme-try-adapted group orbital formed from the σ_{L} orbitals, $c_{E}{ }^{2}+$ $c_{\mathrm{L}}{ }^{2}=1$. All the interrelations between the coefficients $c_{\mathrm{E}}, c_{\mathrm{L}}$, the energies $\epsilon(\psi), \epsilon\left(\psi^{*}\right)$, and other necessary formulas may be found in ref 2 and 3.

Results and Discussion

Square Complexes $\mathrm{EL}_{4} \boldsymbol{D}_{\mathbf{4} h} . \mathbf{1 6 e}^{\mathbf{d}} \mathbf{M L}_{4}$. Let us begin with transition metal complexes $\mathrm{d}^{8} \mathrm{ML}_{4}$ where we will consider the
effects of substitution of the ligand $\mathrm{L}_{(1)}$ on the x axis. The relevant orbitals of the metal M and ligands L may be found in any textbook on quantum chemistry. ${ }^{4}$ If we use the proper orthogonalized $\operatorname{sd}_{z}=$ hybrids, namely

$$
\begin{gather*}
\phi_{1}=\mu \mathrm{s}+\nu \mathrm{d}_{z 2} \tag{5}\\
\phi_{2}=\nu \mathrm{s}-\mu \mathrm{d}_{z 2} \tag{6}\\
\left\{\phi_{1}\left|\frac{1}{2}\left(\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}\right)\right|=0\right. \tag{7}
\end{gather*}
$$

the relevant occupied MOs of ML_{4} will be

$$
\begin{gather*}
\psi_{1}=a\left(\nu \mathrm{~S}-\mu \mathrm{d}_{-2}\right)+b \frac{1}{2}\left(\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}\right) \tag{8}\\
\psi_{2}=g \mathrm{~d}_{x^{2}-y^{2}}+h \frac{1}{2}\left(\sigma_{1}-\sigma_{2}+\sigma_{3}-\sigma_{4}\right) \tag{9}\\
\psi_{3}=e \mathrm{p}_{x}+f \frac{1}{\sqrt{2}}\left(\sigma_{1}-\sigma_{3}\right) \tag{10}
\end{gather*}
$$

The vacant MOs obtained according to (3) and (4) correspond to $\psi_{1}{ }^{*}=\psi_{5}, \psi_{2}{ }^{*}=\psi_{4}$, and $\psi_{3} *=\psi_{6}$ with the typical energy order ${ }^{5}$

$$
\begin{equation*}
\epsilon\left(\psi_{1}\right)<\epsilon\left(\psi_{2}\right)<\epsilon\left(\psi_{3}\right)<\epsilon\left(\psi_{4}\right)<\epsilon\left(\psi_{5}\right)<\epsilon\left(\psi_{6}\right) \tag{11}
\end{equation*}
$$

Further, we can write

$$
\begin{gather*}
f^{2}-e^{2}>b^{2}-a^{2} \geq h^{2}-g^{2}>0 \tag{12}\\
e f<a b \leq g h \tag{13}\\
E_{1 j}>E_{2 j}>E_{3 j}, \quad j=4,5,6 \tag{14}
\end{gather*}
$$

To the first order, changes in the $\mathrm{M}-\mathrm{L}_{\text {tr }}$ overlap population will be

$$
\begin{align*}
& \frac{\delta N\left(\mathrm{M}-\mathrm{L}_{\mathrm{tr}}\right)}{\delta \alpha^{\prime}}=-\frac{a b \nu}{4}\left[\left(\frac{f^{2}}{E_{35}}-\frac{e^{2}}{E_{16}}\right)+\frac{1}{2}\left(\frac{g^{2}}{E_{14}}-\frac{h^{2}}{E_{25}}\right)\right. \\
& \left.+\frac{a^{2}-b^{2}}{2 E_{15}}\right] S_{\mathrm{s}}+\frac{e f}{2 \sqrt{2}}\left[\frac{f^{2}-e^{2}}{E_{36}}+\frac{1}{2}\left(\frac{g^{2}}{E_{34}}-\frac{h^{2}}{E_{26}}\right)\right. \\
& \left.\quad+\frac{1}{2}\left(\frac{a^{2}}{E_{35}}-\frac{b^{2}}{E_{16}}\right)\right] S_{\mathrm{p} \sigma}-\frac{\sqrt{3} g h}{8}\left[\left(\frac{f^{2}}{E_{34}}-\frac{e^{2}}{E_{26}}\right)\right. \\
& \left.+\frac{g^{2}-h^{2}}{2 E_{24}}+\frac{1}{2}\left(\frac{a^{2}}{E_{25}}-\frac{b^{2}}{E_{14}}\right)\right] S_{\mathrm{d} \sigma}-\frac{a b \mu}{8}\left[\left(\frac{f^{2}}{E_{35}}-\frac{e^{2}}{E_{16}}\right)\right. \\
& \left.+\frac{1}{2}\left(\frac{g^{2}}{E_{14}}-\frac{h^{2}}{E_{25}}\right)+\frac{a^{2}-b^{2}}{2 E_{15}}\right] S_{\mathrm{d} \sigma} \tag{15}
\end{align*}
$$

Taking into account (12) and (14), we obtain

$$
\begin{array}{r}
\frac{f^{2}}{E_{35}}-\frac{e^{2}}{E_{16}}>\frac{f^{2}-e^{2}}{E_{35}}>\frac{\left(h^{2}-g^{2}\right)+\left(b^{2}-a^{2}\right)}{2 E_{35}}>\frac{h^{2}-g^{2}}{2 E_{25}} \\
+\frac{b^{2}-a^{2}}{2 E_{15}}>\frac{1}{2}\left(\frac{h^{2}}{E_{25}}-\frac{g^{2}}{E_{14}}\right)+\frac{1}{2} \frac{b^{2}-a^{2}}{E_{15}} \tag{16}
\end{array}
$$

In the very last step of this chain of inequalities we also used $E_{14} \simeq E_{25}$. From (16) we immediately conclude that the s contribution to $\delta N\left(\mathrm{M}-\mathrm{L}_{\mathrm{tr}}\right) / \delta \alpha^{\prime}(15)$ is always negative. Quite similarly we find that the d_{σ} contributions are also negative but the p_{σ} one is positive. If we add the relationship

$$
\begin{equation*}
\frac{f^{2}}{E_{35}}-\frac{e^{2}}{E_{16}} \simeq \frac{f^{2}}{E_{34}}-\frac{e^{2}}{E_{26}}>\frac{f^{2}-e^{2}}{E_{36}} \tag{17}
\end{equation*}
$$

we come to the strict conclusion that the negative s and $\mathrm{d} \sigma$ contributions are always bigger in absolute value than the positive p σ contribution. Thus, for a better donor substituent L^{\prime} (when $\delta \alpha^{\prime}>0$) we can predict a trans weakening.

Similarly, for the $M-L_{\text {cis }}$ bond we have

$$
\begin{align*}
\frac{\delta N\left(\mathrm{M}-\mathrm{L}_{\mathrm{ci}}\right)}{\delta \alpha^{\prime}} & =\frac{a b \nu}{8}\left[\frac{b^{2}-a^{2}}{E_{15}}-\left(\frac{h^{2}}{E_{25}}-\frac{g^{2}}{E_{14}}\right)\right] S_{\mathrm{s}} \\
- & \frac{\sqrt{3} g h}{16}\left[\left(\frac{b^{2}}{E_{14}}-\frac{a^{2}}{E_{25}}\right)-\frac{h^{2}-g^{2}}{E_{24}}\right] S_{\mathrm{d} \sigma} \\
& \quad+\frac{a b \mu}{16}\left[\frac{b^{2}-a^{2}}{E_{15}}-\left(\frac{h^{2}}{E_{25}}-\frac{g^{2}}{E_{14}}\right)\right] S_{\mathrm{d} \sigma} \tag{18}
\end{align*}
$$

The principal difference of (15) from (18) is that the latter does not contain the p contribution, i.e., not only the $S_{\mathrm{p} \sigma}$ terms but also the terms with the coefficients f and e. From (12)-(14) we can anticipate that the s and d contributions will be of opposite sign, the s one typically positive and the d one negative. Thus, $\delta N\left(\mathrm{M}_{-\mathrm{L}_{\mathrm{cis}}}\right) / \delta \alpha^{\prime}$ will be smaller in absolute value than $\delta N\left(\mathrm{M}-\mathrm{L}_{\mathrm{tr}}\right) / \delta \alpha^{\prime}$ and may be, in principle, of any sign.

The experimental data agree perfectly with our model conclusions. It is well-known that such strong donor ligands as $\mathrm{H}, \mathrm{CH}_{2} \mathrm{R}$, or SiR_{3} cause a significant lengthening of the $\mathrm{M}-\mathrm{L}_{\mathrm{tr}}$ bonds, by $0.11-0.14 \AA$, though changing very slightly the $\mathrm{M}-\mathrm{L}_{\text {cis }}$ bond lengths. ${ }^{6-8}$ Referring the reader to the relevant reviews ${ }^{6-8}$ we would like to stress that in $\mathrm{d}^{8} \mathrm{ML}_{4}$ complexes the main changes under substitution always occur along the linear $\mathrm{L}^{\prime}-\mathrm{M}-\mathrm{L}$ fragment, the trans lengthening for a better donor substituent L^{\prime}. The cis changes are relatively smaller so that the steric factors can play the decisive role. We shall see below that exactly the same picture is valid for octahedral ML_{6} complexes.

AL4. Main group element complexes AL_{4} can have square geometry only if A is not of the highest oxidation state, namely, in 12 e complexes of the $\mathrm{Xe}^{1 \mathrm{~V}} \mathrm{~F}_{4}$ or $\left[\mathrm{Te}^{11} \mathrm{Cl}_{4}\right]^{2-}$ type. ${ }^{9.10}$ If we adopt the hypervalent scheme for their structure, ${ }^{11}$ i.e., neglect the n d orbitals, we reduce (15) and (18) to

$$
\begin{gather*}
\frac{\delta N\left(\mathrm{~A}-\mathrm{L}_{1 \mathrm{r}}\right)}{\delta \alpha^{\prime}}=-\frac{a b e^{2}}{4}\left[\frac{1}{E_{56}}-\frac{1}{E_{16}}\right] S_{\mathrm{s}} \\
-\frac{e f}{2 \sqrt{2}}\left[\frac{1}{2}\left(\frac{a^{2}}{E_{56}}+\frac{b^{2}}{E_{16}}\right)+\frac{1}{2 E_{46}}-\frac{f^{2}-e^{2}}{E_{36}}\right] S_{\mathrm{p} \sigma} \tag{19}\\
\frac{\delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{cis}}\right)}{\delta \alpha^{\prime}} \equiv 0 \tag{20}
\end{gather*}
$$

In main group element complexes AL_{m} the difference $f^{2}-e^{2}$ $\ll 1$ will be distinctly smaller than in transition metal complexes $\mathrm{ML}_{m}{ }^{12}$ (cf. (12)). Thus, taking into account (14), we find that not only the s but also the p_{σ} contribution to δN -$\left(\mathrm{A}-\mathrm{L}_{\mathrm{tr}}\right) / \delta \alpha^{\prime}$ will be negative. Therefore for a better donor substituent L^{\prime} we can foresee a trans weakening which must be relatively more significant than that in transition metal complexes (cf. (15)) where there are terms of opposite signs.

This result represents an explicit proof of the general statement made earlier ${ }^{13}$ for the $\mathrm{AL}_{m-k} \mathrm{~L}_{k^{\prime}}$ complexes with the $30-4 \mathrm{e}$ bonding, a result confirmed by all the available experimental data. ${ }^{10,14}$ For instance, in the relevant square Te^{11} complexes, when a phenyl group is one of the ligands, the position opposite to the phenyl group is virtually vacant ${ }^{10,14}$ but the cis bond lengths are strikingly insensitive to substitution.

Bipyramidal Complexes EL $_{\boldsymbol{m}}$. Considering octahedral complexes EL_{6} as the special case of tetragonal bipyramidal ones, one can treat all the bipyramidal complexes, $\mathrm{EL}_{5} D_{3 h}$ (TB), $\mathrm{EL}_{6} O_{h}$, and $\mathrm{EL}_{7} D_{5 h}(\mathrm{~PB})$, along similar lines. Such an approach proved to be rather fruitful in considering relative bond strengths in these polyhedra ${ }^{3}$ and we shall follow it in the present work.

In both ML_{5} and ML_{7} complexes there exists the problem of $\mathrm{sd}_{2} 2$ mixing within the $\mathrm{A}_{1}{ }^{\prime}$ representation. Our previous analysis has shown ${ }^{3}$ that the resulting bond strengths in $\mathrm{ML}_{r+2}, \mathrm{ML}_{5}$ and $M L_{7}$, are changed only slightly depending on which orthonormalized linear combinations of $\sigma_{\mathrm{ax}}=$ $(1 / \sqrt{2})\left(\sigma_{1}+\sigma_{2}\right)$ and $\sigma_{\mathrm{eq}}=(1 / \sqrt{r})\left(\sigma_{3}+\sigma_{4}+\ldots+\sigma_{r+2}\right)$, orthogonal to s or $\mathrm{d}_{z^{2}}$, we use as the basis one. Therefore for our further consideration we choose the linear combinations

$$
\begin{gather*}
\theta_{1}=\frac{1}{\sqrt{r+2}}\left(\sigma_{1}+\sigma_{2}+\ldots+\sigma_{r+2}\right) \tag{21}\\
\theta_{2}=\sqrt{\frac{r}{2(r+2)}}\left(\sigma_{1}+\sigma_{2}\right) \\
\quad-\sqrt{\frac{2}{r(r+2)}}\left(\sigma_{3}+\sigma_{4}+\ldots+\sigma_{r+2}\right) \tag{22}
\end{gather*}
$$

where θ_{2} (22) is orthogonal to s. Such a choice makes all the relationships easier to obtain, in particular, by reducing the transition metal cases to the main group element ones where owing to the hypervalent structure we neglect the d orbital contribution to bonding completely.

Axial Substitution. $(2 r+4)$ e-18e ML ${ }_{r+2}$. We shall consider the effects of substitution of the ligand $\mathrm{L}_{(1)}$ on the z axis. The relevant orbitals can be found in ref 3 and 4.

The occupied MOs of $\mathrm{d}^{0} \mathrm{ML}_{r+2}$ will be

$$
\begin{gather*}
\psi_{1}=a \mathrm{~s}+\frac{b}{\sqrt{r+2}}\left(\sigma_{1}+\sigma_{2}+\ldots+\sigma_{r+2}\right) \tag{23}\\
\psi_{2}=g \mathrm{~d}_{z_{2}}+h\left[\sqrt{\frac{r}{2(r+2)}}\left(\sigma_{1}+\sigma_{2}\right)\right. \\
\left.-\sqrt{\frac{2}{r(r+2)}}\left(\sigma_{3}+\sigma_{4}+\ldots+\sigma_{r+2}\right)\right] \tag{24}\\
\psi_{3}=e \mathrm{p}_{z}+f \frac{1}{\sqrt{2}}\left(\sigma_{1}-\sigma_{2}\right) \tag{25}
\end{gather*}
$$

and their vacant counterparts $\psi_{1} *=\psi_{5}, \psi_{2} *=\psi_{4}$, and $\psi_{3} *=$ ψ_{6} are obtained according to (3) and (4). The inequalities (12) and (13) which are typical for any transition metal complex ML_{m} remain valid.

To first order, we obtain for the $\mathrm{M}-\mathrm{L}_{\mathrm{tr}}$ bond

$$
\begin{align*}
& \frac{\delta N\left(\mathrm{M}-\mathrm{L}_{\mathrm{tr}}\right)}{\delta \alpha^{\prime}}=-\frac{a b}{\sqrt{r+2}}\left[\frac{1}{2}\left(\frac{f^{2}}{E_{35}}-\frac{e^{2}}{E_{16}}\right)+\frac{r}{2(r+2)}\right. \\
&\left.\times\left(\frac{g^{2}}{E_{14}}-\frac{h^{2}}{E_{25}}\right)+\frac{a^{2}-b^{2}}{(r+2) E_{15}}\right] S_{\mathrm{s}}+\frac{e f}{\sqrt{2}}\left[\frac{f^{2}-e^{2}}{2 E_{36}}\right. \\
&\left.+\frac{r}{2(r+2)}\left(\frac{g^{2}}{E_{34}}-\frac{h^{2}}{E_{26}}\right)+\frac{1}{r+2}\left(\frac{a^{2}}{E_{35}}-\frac{b^{2}}{E_{16}}\right)\right] S_{\mathrm{p} \sigma} \\
&-g h \sqrt{\frac{r}{2(r+2)}}\left[\frac{1}{2}\left(\frac{f^{2}}{E_{34}}-\frac{e^{2}}{E_{26}}\right)\right. \\
&\left.+\frac{r\left(\mathrm{~g}^{2}-h^{2}\right)}{2(r+2) E_{24}}+\frac{1}{r+2}\left(\frac{a^{2}}{E_{25}}-\frac{b^{2}}{E_{14}}\right)\right] S_{\mathrm{d} \sigma} \tag{26}
\end{align*}
$$

Thus, using the identity

$$
\begin{equation*}
\frac{1}{2} \equiv \frac{r}{2(r+2)}+\frac{1}{r+2} \tag{27}
\end{equation*}
$$

and writing out a chain of the inequalities similar to those in (16) we obtain a strict conclusion that both the s and d_{σ} contributions to $\delta N\left(\mathrm{M}-\mathrm{L}_{\mathrm{tr}}\right) / \delta \alpha^{\prime}(26)$ are negative and bigger in absolute value than the positive p_{σ} one.

Similarly, for the $M-L_{c i s}$ bond we have

$$
\begin{array}{r}
\frac{\delta N\left(\mathrm{M}-\mathrm{L}_{\mathrm{cis}}\right)}{\delta \alpha^{\prime}}=\frac{a b}{(r+2)^{3 / 2}}\left[\frac{b^{2}-a^{2}}{E_{15}}-\left(\frac{h^{2}}{E_{25}}-\frac{g^{2}}{E_{14}}\right)\right] S_{\mathrm{s}} \\
-\frac{g h \sqrt{r}}{[2(r+2)]^{3 / 2}}\left[\left(\frac{b^{2}}{E_{14}}-\frac{a^{2}}{E_{25}}\right)-\frac{h^{2}-g^{2}}{E_{24}}\right] S_{\mathrm{d} \sigma} \tag{28}
\end{array}
$$

As in the $\mathrm{d}^{8} \mathrm{ML}_{4} D_{4 h}$ case, we come to the conclusion that the s and d_{σ} contributions to $\delta N\left(\mathrm{M}-\mathrm{L}_{\text {cis }}\right) / \delta \alpha^{\prime}$ will be of opposite sign. Thus, $\delta N\left(\mathrm{M}-\mathrm{L}_{\mathrm{cis}}\right) / \delta \alpha^{\prime}$ has to be, as a rule, substantially smaller in absolute value than $\delta N\left(\mathrm{M}-\mathrm{L}_{\mathrm{tr}}\right) / \delta \alpha^{\prime}$ and may be of any sign.

In low-spin $\mathrm{d}^{1}-\mathrm{d}^{8}(11 \mathrm{e}-18 \mathrm{e}) \mathrm{ML}_{5}, \mathrm{~d}^{1}-\mathrm{d}^{6}(13 \mathrm{e}-18 \mathrm{e}) \mathrm{ML}_{6}$, and $\mathrm{d}^{1}-\mathrm{d}^{4}(15 \mathrm{e}-18 \mathrm{e}) \mathrm{ML}_{7}$ complexes the extra electrons occupy the MOs which do not involve the perturbing $\sigma_{1}{ }^{\prime}$ orbital. Thus, the results in question hold for all these complexes. In other words, for axial substitution the regularities of $\delta N\left(\mathrm{M}-\mathrm{L}_{\mathrm{tr}}\right)$ and $\delta N\left(\mathrm{M}-\mathrm{L}_{\mathrm{cis}}\right)$ have to be the same for all transition metal complexes.

As for the relevant experimental structural data, the various $\mathrm{ML}_{5} \mathrm{~L}^{\prime}$ complexes have been studied most systematically, ${ }^{6,7.15}$ the data on $\mathrm{ML}_{4} \mathrm{~L}^{\prime}$ complexes are significantly poorer, ${ }^{16}$ and $\mathrm{ML}_{6} \mathrm{~L}^{\prime}$ complexes are entirely unknown. ${ }^{17}$ For octahedral complexes $\mathrm{ML}_{5} \mathrm{~L}^{\prime}$ all the available experimental results correspond to the trans influence with the main changes always within the linear fragment $L^{\prime}-\mathrm{M}-\mathrm{L}$, in complete agreement with our model conclusions. Referring the reader to the recent reviews, ${ }^{6.7 .15}$ we would like to stress again that as $\mid \delta N\left(\mathrm{M}_{-}\right.$ $\left.\mathrm{L}_{\mathrm{cis}}\right) / \delta \alpha^{\prime} \mid$ must be small, the value and even the sign of $\delta N\left(\mathrm{M}-\mathrm{L}_{\mathrm{cis}}\right)$ can depend strongly on steric factors, especially in less symmetric complexes. The $\mathrm{d}^{2} \mathrm{MO}^{1 \mathrm{~V} 19}$ and $\mathrm{Re}^{\mathrm{V} 20}$ complexes of the $\mathrm{ML}_{k} \mathrm{~L}^{\prime} \mathrm{L}^{\prime \prime}{ }_{5-k}$ type are good examples of steric influences.
$(2 r+4) e \mathrm{AL}_{r+2}, \ln$ this case the central atom A is of the highest oxidation state. Adopting the hypervalent scheme we reduce (26) and (28) to

$$
\begin{array}{r}
\frac{\delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{tr}}\right)}{\delta \alpha^{\prime}}=\frac{a b}{\sqrt{r+2}}\left[\frac{r}{2(r+2) E_{45}}-\frac{1}{2}\left(\frac{f^{2}}{E_{35}}-\frac{e^{2}}{E_{16}}\right)\right. \\
\left.+\frac{b^{2}-a^{2}}{(r+2) E_{15}}\right] S_{\mathrm{s}}-\frac{e f}{\sqrt{2}}\left[\frac{r}{2(r+2) E_{46}}-\frac{f^{2}-e^{2}}{2 E_{36}}\right. \\
\left.\quad+\frac{1}{r+2}\left(\frac{b^{2}}{E_{16}}-\frac{a^{2}}{E_{35}}\right)\right] S_{\mathrm{p} \sigma} \\
\frac{\delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{cis}}\right)}{\delta \alpha^{\prime}}=-\frac{a b}{(r+2)^{3 / 2}}\left[\frac{1}{E_{45}}-\frac{b^{2}-a^{2}}{E_{15}}\right] S_{\mathrm{s}} \tag{30}
\end{array}
$$

The value of $\delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{cis}}\right) / \delta \alpha^{\prime}$ is always negative, so for a better donor substituent $\mathrm{L}^{\prime}\left(\delta \alpha^{\prime}>0\right)$ we can predict with certainty a cis weakening. The analysis of $\delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{tr}}\right) / \delta \alpha^{\prime}$ is more complicated. One can show ${ }^{21}$ that the s and p contributions to $\delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{tr}}\right) / \delta \alpha^{\prime}$ will be typically of the opposite signs, the s one positive and the p one negative, but the relative values of each contribution may depend on all components of $A L_{m}$, i.e., A, L , and even m. We can foresee that in some $\mathrm{AL}_{m-1} \mathrm{~L}^{\prime}$ complexes, for $\delta \alpha^{\prime}>0$, one might observe a trans strengthening (in contrast to only a trans weakening in $12 \mathrm{e}^{\mathrm{AL}} \mathrm{L}_{4} D_{4 h}$ complexes where A is not of the highest oxidation state). Actually, this effect has been observed in some $\mathrm{Sn}^{1 V}$ complexes. ${ }^{22}$

It should be stressed that some ambiguity of model conclusions for $\delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{tr}}\right)$ in AL_{m} complexes where A is of the
highest oxidation state only reflects the very complicated reality. Remember that in ML_{m}, complexes the ligand orbitals σ_{1} usually lie lower than all the metal orbitals, $n \mathrm{~s}, n \mathrm{p},(n-1) \mathrm{d}$, but in AL_{m} complexes the ligand orbitals lie typically between the $n \mathrm{p}$ and $n \mathrm{~s}$ orbitals of A . Therefore in ML_{m} the regularities of substitution are simpler and less varied than those in $\mathrm{AL}_{m}{ }^{13}$ where they drastically depend on the oxidation state of A and fine details of the relative orbital energies.

Unfortunately, there are too little reliable experimental data to check our predictions. One of the best examples is the recent redetermination of the structure of $\mathrm{SF}_{5} \mathrm{Cl}^{23}$ where microwave and electron diffraction data have been combined. The $S-F_{t r}$ and $S-F_{\text {cis }}$ bonds were found to be lengthened as compared with $\mathrm{SF}_{6}(1.588,1.566$ and $1.561 \AA$, respectively), the trans one longer than the cis one by $0.02 \AA$. This prevailing trans lengthening has been explained, however, by steric ("secondary relaxation") effects rather than the electronic ("primary") ones. Thus, there is an urgent need for new experimental and computational data on $\mathrm{AL}_{m-1} \mathrm{~L}^{\prime}$ complexes for wide ranges of A, L, and L^{\prime} to check our model conclusions.

14e AL_{6}. There are a few known examples of such octahedral complexes $\left[\mathrm{SbBr}_{6}{ }^{3-}, \mathrm{AX}_{6}{ }^{2-}(\mathrm{A}=\mathrm{Se}, \mathrm{Te}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br})^{9}\right]$ where the central atom A is not in the highest oxidation state. This case is quite similar to the $12{\mathrm{e} \mathrm{AL}_{4} \text { one, namely, for a }}$ better donor L^{\prime} we can foresee a strong trans weakening and insignificant cis changes. Because of a lack of experimental data on substituted $\mathrm{AL}_{6-k} \mathrm{~L}_{k}{ }^{\prime}$ complexes this conclusion may be considered as a prediction. We will not consider the similar complexes of the $12 \mathrm{e} \mathrm{AL}_{5}$ and $16 \mathrm{e} \mathrm{AL}_{7}$ type as they do not have the TB and PB forms, respectively. ${ }^{9}$

Equatorial Substitution. We will now consider the effects of substitution of the equatorial ligand $\mathrm{L}_{(3)}$ on the x axis. The relevant orbitals are given in ref 3 . As the orbitals σ_{1} (along the z axis) and σ_{3} enter only the MOs ψ_{1} (23) and $\psi_{2}(24)$, which are the same in our model for both axial and equatorial substitution, the relationships (28) and (30) for $\delta N\left(\mathrm{E}-\mathrm{L}_{\text {cis }}\right)$ will be the same. In other words, in our model the influence of the ligand $\mathrm{L}_{(1)}$ on $\mathrm{L}_{(3)}$ will be the same as that of $\mathrm{L}_{(3)}$ on $\mathrm{L}_{(1)}$. Thus, we need to consider the effects of substitution of the ligand $\mathrm{L}_{(3)}$ only on other equatorial ligands, $\mathrm{L}_{(4)}, \mathrm{L}_{(5)}$, etc. As in $\mathrm{EL}_{6} O_{h}$ equatorial substitution is equivalent to axial for all ligands, ${ }^{24}$ only the $\mathrm{EL}_{5} D_{3 h}$ and $\mathrm{EL}_{7} D_{5 h}$ cases are left to discuss.

10e-18e ML5 and 14e-18e ML ${ }_{7}$. The relevant expressions for $\delta N(\mathrm{M}-\mathrm{L}) / \delta \alpha^{\prime}$ are very cumbersome and include many terms depending on the signs of $\cos \theta$ where θ are the valence angles. Nevertheless, one can show ${ }^{21}$ that for equatorial substitution the changes $\delta N(\mathrm{M}-\mathrm{L})$ for the equatorial ligands will be larger in absolute value than those for the axial (cis) ligands. We can also foresee one result which is specific to the ML_{7} case: for the two equatorial ligands, $\mathrm{L}_{(4)}, \theta=72^{\circ}$, and $\mathrm{L}_{(5)}, \theta$ $=144^{\circ}$, which are nonequivalent to equatorial substitution, the values of $\delta N\left(\mathrm{M}-\mathrm{L}_{(4)}\right)$ and $\delta N\left(\mathrm{M}-\mathrm{L}_{(5)}\right)$ will be, most probably, of opposite sign, the former positive, the latter negative for a better donor ligand L^{\prime}. As there are no relevant experimental data on $\mathrm{ML}_{6} \mathrm{~L}^{\prime}$ complexes, ${ }^{17}$ the above result is a prediction.

The general conclusion about the smaller changes for the axial compared with the equatorial position seems to be valid also for the $\mathrm{d}^{0}-\mathrm{d}^{8}(10 \mathrm{e}-18 \mathrm{e}) \mathrm{ML}_{4} \mathrm{~L}^{\prime} C_{2 v}$ complexes. Unfortunately, there are no relevant structural experimental data. ${ }^{16}$
 of the highest oxidation state (otherwise these complexes will not be of the regular bipyramidal forms ${ }^{9}$). For all Al_{r+2} complexes

$$
\begin{equation*}
\frac{\delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{ax}}\right)}{\delta \alpha^{\prime}}=-\frac{a b}{(r+2)^{3 / 2}}\left(\frac{1}{E_{45}}-\frac{b^{2}-a^{2}}{E_{15}}\right) S_{\mathrm{s}} \tag{31}
\end{equation*}
$$

Table I. Signs of the χ Contributions to $\delta N(\mathrm{E}-\mathrm{L}) / \delta \alpha^{\prime}$

complex		χ	bond	
parent	____substituted		$\overline{\mathrm{E}-\mathrm{L}_{\text {tr }}}$	E-L($\left.{ }^{\prime \prime}\right)_{\text {cis }}$
$\mathrm{d}^{8} \mathrm{ML}_{4} D_{4 h}$	$\mathrm{ML}_{3} \mathrm{~L}^{\prime} \mathrm{C}_{2 i}, \mathrm{MLL}^{\prime} \mathrm{L}^{\prime \prime}{ }_{2} \mathrm{C}_{2}$	s	-	+ ${ }^{\text {a }}$
$\mathrm{d}^{0}-\mathrm{d}^{8} \mathrm{ML}_{5} D_{3 h}$	$\mathrm{ML}_{4} \mathrm{~L}^{\prime} \mathrm{C}_{3}{ }^{\prime}$	p	+	none
$\mathrm{d}^{0}-\mathrm{d}^{6} \mathrm{ML}_{6} \mathrm{O}_{h}$	$\mathrm{ML}_{5} \mathrm{~L}^{\prime} \mathrm{C}_{4 c}, \mathrm{ML}_{3} \mathrm{~L}^{\prime} \mathrm{L}^{\prime \prime}{ }_{2} \mathrm{C}_{26}$	d	-	- ${ }^{\text {a }}$
$\mathrm{d}^{0}-\mathrm{d}^{4} \mathrm{ML}_{7} D_{5 h}$	$\mathrm{ML}_{6} \mathrm{~L}^{\prime} \mathrm{C}_{5 t}$	total	-	$\pm{ }^{\dagger}$
$\mathrm{d}^{0}-\mathrm{d}^{8} \mathrm{ML}_{5} D_{3 h}$	$\mathrm{ML}_{4} \mathrm{~L}^{\prime} \mathrm{C}_{2 r}$.	s	c	+ ${ }^{\text {a }}$
$\mathrm{d}^{0}-\mathrm{d}^{4} \mathrm{ML}_{7} D_{5 h}$	$\mathrm{ML}_{6} \mathrm{~L}^{\prime} C_{2 r}$	p		none
		d		-a
		total		$\pm \delta^{b}$
$12 \mathrm{e} \mathrm{AL}_{4} D_{4 h}$	$\mathrm{AL}_{3} \mathrm{~L}^{\prime} \mathrm{C}_{2 r}, \mathrm{ALL}^{\prime} \mathrm{L}^{\prime \prime}{ }_{2} \mathrm{C}_{2}$	s	-	none
$14 \mathrm{e} \mathrm{AL}{ }_{6} O_{h}$	$\mathrm{AL}_{5} \mathrm{~L}^{\prime} C_{4 r}, \mathrm{AL}_{3} \mathrm{~L}^{\prime} \mathrm{L}^{\prime \prime}{ }_{2} C_{2 r}$	p	-	none
		total	-	none
$10 \mathrm{e} \mathrm{AL}_{5} D_{3 h}$	$\mathrm{AL}_{4} \mathrm{~L}^{\prime} \mathrm{C}_{3}, \mathrm{AL}_{3} \mathrm{~L}^{\prime} 2 \mathrm{D}_{3 h^{d}}$	s	+"	-
12e $\mathrm{AL}_{6} \mathrm{O}_{h}$	$\mathrm{AL}_{5} \mathrm{~L}^{\prime} \mathrm{C}_{4}{ }^{\prime}, \mathrm{AL}_{3} \mathrm{~L}^{\prime} \mathrm{L}^{\prime \prime}{ }_{2} C_{2 c}$	p	- ${ }^{\text {a }}$	none
$14 \mathrm{e} \mathrm{AL}{ }_{7} D_{5 h}$	$\mathrm{AL}_{6} \mathrm{~L}^{\prime} C_{56}, \mathrm{AL}_{5} \mathrm{~L}^{\prime}{ }_{2} D_{5 h^{\prime}}{ }^{\prime \prime}$	total	\pm	-
$10 \mathrm{e} \mathrm{AL} \mathrm{S}_{5} D_{3 n}$	$\mathrm{AL}_{4} \mathrm{~L}^{\prime} \mathrm{C}_{22}, \mathrm{AL}_{3} \mathrm{~L}^{\prime}{ }_{2} \mathrm{C}_{26}$	s	c	-
$14 \mathrm{e} \mathrm{AL}_{7} \mathrm{D}_{5 n}$	$\mathrm{AL}_{6} \mathrm{~L}^{\prime} \mathrm{C}_{2}$	p		none

${ }^{a}$ The opposite sign is not excluded. ${ }^{b}$ The effect is relatively small in absolute value and may be of any sign. ${ }^{c}$ The influence of the equatorial substituent L^{\prime} on other equatorial ligands L depends on the value of the relevant valence angle θ. See details in the text. " \ln the $\mathrm{AL}_{3} \mathrm{~L}_{2}{ }^{\prime}$ and $\mathrm{AL}_{2} \mathrm{~L}_{3}^{\prime} D_{3 h}$ complexes there exist only the $\mathrm{A}-\mathrm{L}_{\mathrm{cis}}$ bonds, $\mathrm{A}-\mathrm{L}_{\mathrm{cq}}$ and $\mathrm{A}-\mathrm{L}_{\mathrm{ux}}$, respectively. The same holds for the $\mathrm{AL}_{5} \mathrm{~L}_{2}^{\prime}$ and $\mathrm{AL}_{2} \mathrm{~L}_{5^{\prime}} D_{5 h}$ complexes.
which, of course, coincides with $\delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{cis}}\right)(30)$ for the axial substitution. Though the relevant expressions for $\delta N(\mathrm{~A}-$ $\left.\mathrm{L}_{\mathrm{cq}}\right) / \delta \alpha^{\prime}$ include many terms depending on the valence angles θ, they can be analyzed in explicit form, too. ${ }^{21}$

In AL_{5} under equatorial substitution, which is typical for a better donor $\mathrm{L}^{\prime}\left(\delta \alpha^{\prime}>0\right),{ }^{3.25} \delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{ax}}\right)$ has only the negative s contribution but $\delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{cq}}\right)$ has typically the negative s and positive p contributions. ${ }^{21}$ So $\delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{ix}}\right)$ must always be negative and larger in absolute value than $\delta N\left(\mathrm{~A}-\mathrm{L}_{\mathrm{cq}}\right)$ which for strongly electronegative ligands L will be negative as well. The experimental data on $\mathrm{PF}_{4} \mathrm{~L}^{\prime}, \mathrm{L}^{\prime}=\mathrm{H},{ }^{26} \mathrm{CH}_{3},{ }^{27 \mathrm{~b}}$ agree with this prediction. From the general properties of $30-4 \mathrm{e}$ bonding it follows ${ }^{2}$ that this tendency to weaken the axial A-L bonds must be most distinct in trisubstituted complexes of the $\mathrm{PF}_{2}\left(\mathrm{CH}_{3}\right)_{3} D_{3 h}$ type which again agrees with experiment. ${ }^{27}$

In AL_{7} the $\mathrm{A}-\mathrm{L}_{(4)}$ bond corresponds to the valence angle of 72°, close to $90^{\circ}\left(\mathrm{A}-\mathrm{L}_{\mathrm{cis}}\right)$, but the $\mathrm{A}-\mathrm{L}_{(5)}$ bond corresponds to 144° closer to $180^{\circ}\left(\mathrm{A}-\mathrm{L}_{t r}\right)$. So, we can foresee that for a given substituent L^{\prime}, typically, the sign of $\delta N\left(\mathrm{~A}-\mathrm{L}_{(4)}\right)$ will be the same as $\delta N\left(\mathrm{~A}-\mathrm{L}_{(1)}\right)$ but opposite to $\delta N\left(\mathrm{~A}-\mathrm{L}_{(5)}\right)$. The same is true for the signs of the s contributions to these $\delta N\left(\mathrm{~A}-\mathrm{L}_{i}\right)$ values.

The major conclusions of the present work are summarized in Table I. Certainly, these results can be extended easily to embrace other properties of the E-L bonds besides their strengths (lengths). These aspects have been discussed already for linear $E L L^{\prime}$, planar trigonal $\mathrm{AL}_{3-k} \mathrm{~L}_{k}{ }^{\prime}$, and tetrahedral $\mathrm{AL}_{4-k} \mathrm{~L}_{k}{ }^{\prime}$ compounds. ${ }^{2}$ For instance, a positive sign of the p contribution corresponds to an increase of the E-L bond polarity as the p orbitals are the highest of the valence orbitals. Further, the sign of the s contribution determines the change of the s character of the relevant E-L bond which is directly related to isomer shifts δ_{E} of the Mössbauer spectra or nuclear spin coupling constants ${ }^{1} K(\mathrm{E}-\mathrm{L})$ of NMR spectra. Such relationships are not trivial, however, especially for ${ }^{1} K(\mathrm{E}-\mathrm{L})$, where the theory ${ }^{28}$ predicts, in agreement with experiment, quite different regularities of ${ }^{1} K(\mathrm{E}-\mathrm{L})$ in various $\mathrm{EL}_{m-k} \mathrm{~L}_{k}{ }^{\prime}$ compounds depending on $\mathrm{E}, \mathrm{L}, \mathrm{L}^{\prime}$, and even k.

The important result of the present work (see Table 1) is that signs of the s and total contributions to $\delta N(\mathrm{E}-\mathrm{L})$ will be the same for $\mathrm{M}-\mathrm{L}_{\mathrm{tr}}, \mathrm{A}(\mathrm{HOS})-\mathrm{L}_{\mathrm{cis}}$, and $\mathrm{A}(\mathrm{NHOS})-\mathrm{L}_{\mathrm{tr}}$ but may be opposite for $\mathrm{M}-\mathrm{L}_{\text {cis }}$ and $\mathrm{A}(\mathrm{HOS})-\mathrm{L}_{\mathrm{tr}}$ (HOS and NHOS
designate the highest and not the highest oxidation state, respectively). This result removes some apparent contradictions among various correlations between the $\mathrm{E}-\mathrm{L}$ bond strength and properties such as ${ }^{1} K(\mathrm{E}-\mathrm{L}), \delta_{\mathrm{I}}$, etc. ${ }^{28}$ As a whole, all such regularities represent the essence of the effects of substitution in any chemical compound which for coordination compounds are usually considered as manifestations of the mutual influence of ligands. $6,7,15$

Comparison with Other Approaches. Our model has been developed in the framework of the perturbation theory of canonical MOs. This theory is widespread in chemistry of organic π electron systems ${ }^{29}$ where each atom has only one valence orbital. Attempts to apply this theory to σ-bonded compounds where the central atom uses the s, p, d valence set, to our knowledge, include only two studies. ${ }^{30,31}$ First, Baranovsky and Sizova ${ }^{30}$ have considered substitution in some square Pt^{11} complexes, changes in the effective charges of the ligands L having been chosen as the criterion of $\mathrm{Pt}-\mathrm{L}$ bond strength. This criterion is less general than that of the overlap population; ${ }^{32}$ in particular, it is especially poor for the $\mathrm{A}-\mathrm{L}$ bonds in most AL_{m} compounds. ${ }^{13}$ Second, Popov ${ }^{31}$ has considered substitution in octahedral complexes EL_{6} and used the criterion of the overlap population. Popov's approach is rather similar to ours. One of the differences is that we express $\delta N(\mathrm{E}-\mathrm{L}) / \delta \alpha^{\prime}$ in terms of the overlap integrals $S_{\chi_{1}}=\left\langle\chi \mid \sigma_{\mathrm{L}}\right\rangle, \chi=\mathrm{s}, \mathrm{p}, \mathrm{d}$, for a given ligand L rather than of the group overlap integrals. ${ }^{31}$ Besides, we accepted somewhat different approximations while considering the MO energy level scheme in EL_{m} complexes. There is, however, one peculiarity of our approach which is most important. Popov has considered only the octahedral EL_{6} case and it is not clear how to apply this approach to less symmetric complexes, for instance, to $\mathrm{TB}_{\mathrm{EL}}^{5}$ and $\mathrm{PB} \mathrm{EL}_{7}$ ones. Our approach embraces all the polyhedra $E L_{m}$, with the octahedron EL_{6} entering as the special case of a bipyramidal complex with equivalent axial and equatorial positions. ${ }^{33}$

On $\boldsymbol{\pi}$ Bonding Effects. If the M-L bond contains not only a σ but also a π component, the latter will contribute to the substitution effects, too. The problem is usually simplified, however, by the fact that the σ bonding is typically much stronger than the π one. In this case, especially for highly symmetric polyhedra like $\mathrm{ML}_{6} O_{h}$ or $\mathrm{ML}_{4} D_{4 h}$, where p and d orbitals belong to different irreducible representations, π
bonding involves mainly the d_{π} metal orbitals, so the π perturbations are eventually reduced to perturbations of the many-center 3o-ne bondings (where n depends on the occupation numbers of the interacting orbitals) considered in the preceding paper. ${ }^{2}$ The L_{tr} contribution will always be larger than the $\mathrm{L}_{\text {cis }}$ ones because of the structure of the symmetryadapted π orbitals in $\mathrm{ML}_{m}{ }^{4.35}$ So in $\mathrm{ML}_{5} \mathrm{~L}^{\prime}$ for π donors L and vacant d_{π} metal orbitals we will have typical $30-4 \mathrm{e}$ bondings with a better π donor L^{\prime} weakening all the perturbed $\mathrm{M}-\mathrm{L} \pi$ bonds but mainly the $\mathrm{M}-\mathrm{L}_{\mathrm{tr}}$ one.

As the prevailing trans influence remains specific for both σ and π perturbations, something new can be expected only if the σ and π contributions are of opposite sign, the latter being larger in absolute value. General regularities of the mutual influence of ligands with multiple metal-ligand bonds have been considered elsewhere. ${ }^{15}$

Conclusion

The approach developed in the present and preceding ${ }^{2}$ works represents an attempt to apply the perturbation theory of canonical MOs to the effects of substitution in main polyhedra $E L_{m}$. The value of the approach in question is, first of all, that it uses simple, justifiable initial assumptions and treats all complexes EL_{m} in the framework of substantially the same formalism. The effects are formulated in terms which can be computed directly (as the overlap population is) and can be easily compared with molecular orbital calculations and experiment. We saw that the agreement with the results is very encouraging. In particular, both similarities and differences in substitution in transition metal and main group element complexes as well as the dependences of the effects on the nature of E, L, and L^{\prime} can be understood. The understanding of the regularities permits, in turn, the far extrapolations to be made, which is especially important for unknown or scarcely studied compounds. In total, the approach in question, in spite of its simplicity, proves to be rather effective and can stimulate new researches. ${ }^{36}$

Acknowledgments. The author is grateful to Professor R. Hoffmann for the stimulating discussions. The author is thankful to Professor P. Dobosh for editing of the manuscript. Finally, the author would like to thank R. Ludgate for the careful typing. This research was supported by the National Science Foundation through Research Grant CHE 7606099.

References and Notes

(1) Formerly of the N. S. Kurnakov Institute of General and Inorganic Chemistry, Academy of Sciences of the USSR, Moscow B-71, 117071, USSR.
(2) E. M. Shustorovich, J. Am. Chem. Soc., 100, 7513 (1978).
(3) E. M. Shustorovich, Inorg. Chem., 17, 2648 (1978).
(4) See, for instance, F. A. Cotton, "Chemical Application of Group Theory", 2nd ed., Interscience, New York, N.Y., 1971.
(5) This order is quite reasonable from general arguments and can be confirmed by different quantitative calculations. There is no sense, however, in specifying quantitative details of the series (11), especially concerning the vacant orbitals.
(6) T. G. Appleton, H. C. Clark, and L. E. Manzer, Coord. Chem. Rev., 10, 335 (1973).
(7) F. R. Hurtley, Chem. Soc. Rev., 2, 163 (1973).
(8) A. Peloso, Coord. Chem. Rev., 10, 123 (1973)
(9) R. J. Gillespie, 'Molecular Geometry', Van Nostrand-Reinhold, Princeton, N.J., 1972.
(10) O. Foss, Pure Appl. Chem., 24, 31 (1970).
(11) (a) J. I. Musher, Angew. Chem., Int. Ed. Engl., 8, 54 (1969); (b) J. I. Musher, J. Am. Chem. Soc., 94, 1370 (1972); (c) J. 1. Musher, Tetrahedron, 30, 1747 (1974).
(12) Differences such as $t^{2}-e^{2}$ decrease rapidly as the parameter $\zeta=\beta_{\mathrm{EL}} /\left(\alpha_{\mathrm{E}}\right.$ $-\alpha_{L}$) increases (see Appendix I in ref 2).
(13) (a) E. M. Shustorovich and Yu. A. Buslaev, Koord. Khim., 1, 1020 (1975); (b) Inorg. Chem., 15, 1142 (1976).
(14) (a) O. Vikane, Acta Chem. Scand., Ser. A, 29, 738 (1975); (b) ibld., 29, 763 (1975); (c) Ibid., 29, 787 (1975).
(15) E. M. Shustorovich, M. A. Porai-Koshits, and Y. A. Buslaev, Coord. Chem. Rev., 17, 1 (1975).
(16) B. A. Frenz and J. A. Ibers in "MTP International Review of Science", Vol. 11, 'Chemical Crystallography"', J. M. Robertson, Ed., Butterworths, London, 1972, p 34.
(17) See, for instance, references in the latest comprehensive study of the $E L_{7}$ complexes. ${ }^{18}$
(18) R. Hoffmann, B. F. Beier, E. L. Muetterties, and A. R. Rossi, Inorg. Chem., 16, 511 (1977).
(19) (a) L. Monojlović-Muir, Chem. Commun., 147 (1971); (b) J. Chem. Soc. A, 2796 (1971); (c) J. Chatt, L. Monojlovich-Muir, and K. W. Muir, Chem. Commun., 655 (1971).
(20) (a) P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 6, 197 (1967): (b) H. W. W. Ehrlich and P. G. Owston, J. Chem. Soc., 4368 (1963).
(21) (a) E: Shustorovich, unpublished results. (b) To save space many of the cumbersome algebraic transformations as well as the confirming results of some model calculations on compounds in question are not given in the present paper. However, there is a version of the manuscript, including the mentioned deletions, which is available upon request.
(22) L. A. Aslanov, V. M. Ionov, V. M. Attiya, A. B. Permin, and V. S. Petrosyan, Zh. Strukt. Khim.. 18, 1103 (1977).
(23) C. J. Marsden and L.' S. Bartell, Inorg. Chem., 15, 3004 (1976).
(24) The relevant transformations which are useful while comparing the octahedron with other bipyramids, TB and PB, can be found in ref 3 .
(25) (a) R. Hoffmann, J. M. Howell, and E. L. Muetterties, J. Am. Chem. Soc., 94, 3047 (1972); (b) E. L. Muetterties, W. Mahler, and R. Schmutzler, Inorg. Chem., 2, 613 (1963); (c) E. L. Muetterties and R. A. Schunn, Q. Rev., Chem. Soc., 20, 245 (1960); (d) A. R. Rossi and R. Hoffmann, Inorg. Chem., 14, 365 (1975).
(26) S. B. Pierce and C. D. Cornwell, J. Chem. Phys., 48, 2118 (1968).
(27) (a) K. W. Hansen and L. S. Bartell, Inorg. Chem., 4, 1775 (1965); (b) L. S. Bartell and K. W. Hansen, ibid., 4, 1777 (1965); (c) H. How and L. S. Bartell, J. Mol. Struct., 15, 209 (1973).
(28) (a) E. Shustorovich, Inorg. Chem,, submitted for publicatlon: (b) E. Shustorovich and P. A. Dobosh, Mol. Phys., submitted for publication.
(29) M. J. S. Dewar and R. C. Dougherty, "The PMO Theory of Organic Chemistry", Plenum Press, New York, N. Y., 1975.
(30) V. I. Baranovsky and O. V. Sizova, Teor. Eksp. Khim., 10, 678 (1974)
(31) (a) N. A. Popov, Koord. Khim., 1, 731 (1975); (b) Ibid., 2, 1155 (1976); (c) lbid., 2, 1340 (1976).
(32) For discussion see, for instance, (a) ref 31c: (b) E. M. Shustorovich, Koord. Khlm., 2, 435 (1976).
(33) For completeness, we must mention the approach developed by Nefedov, ${ }^{34}$ although Popov ${ }^{31}$ a.c has already thoroughly refuted the assumptions upon which the work ${ }^{34}$ is based.
(34) (a) V. I. Nefedov, Chem. Phys., 14, 241 (1976); (b) Ibid., 14, 255 (1976); (c) Koord. Khim., 1, 1299 (1975).
(35) See, for instance, C. J. Ballhausen and H. B. Gray, 'Molecular Orbital Theory', W. A. Benjamin, New York, N. Y., 1964, pp 100, 238.
(36) A comprehensive discussion of the substitution effects in question will be given in E. Shustorovich, Inorg. Chem., in press.

